Loss of Genetic Redundancy in Reductive Genome Evolution
نویسندگان
چکیده
Biological systems evolved to be functionally robust in uncertain environments, but also highly adaptable. Such robustness is partly achieved by genetic redundancy, where the failure of a specific component through mutation or environmental challenge can be compensated by duplicate components capable of performing, to a limited extent, the same function. Highly variable environments require very robust systems. Conversely, predictable environments should not place a high selective value on robustness. Here we test this hypothesis by investigating the evolutionary dynamics of genetic redundancy in extremely reduced genomes, found mostly in intracellular parasites and endosymbionts. By combining data analysis with simulations of genome evolution we show that in the extensive gene loss suffered by reduced genomes there is a selective drive to keep the diversity of protein families while sacrificing paralogy. We show that this is not a by-product of the known drivers of genome reduction and that there is very limited convergence to a common core of families, indicating that the repertoire of protein families in reduced genomes is the result of historical contingency and niche-specific adaptations. We propose that our observations reflect a loss of genetic redundancy due to a decreased selection for robustness in a predictable environment.
منابع مشابه
Genome reduction as the dominant mode of evolution
A common belief is that evolution generally proceeds towards greater complexity at both the organismal and the genomic level, numerous examples of reductive evolution of parasites and symbionts notwithstanding. However, recent evolutionary reconstructions challenge this notion. Two notable examples are the reconstruction of the complex archaeal ancestor and the intron-rich ancestor of eukaryote...
متن کاملSolving a Redundancy Allocation Problem by a Hybrid Multi-objective Imperialist Competitive Algorithm
A redundancy allocation problem (RAP) is a well-known NP-hard problem that involves the selection of elements and redundancy levels to maximize the system reliability under various system-level constraints. In many practical design situations, reliability apportionment is complicated because of the presence of several conflicting objectives that cannot be combined into a single-objective functi...
متن کاملGene Family: Structure, Organization and Evolution
Gene families are considered as groups of homologous genes which they share very similar sequences and they may have identical functions. Members of gene families may be found in tandem repeats or interspersed through the genome. These sequences are copies of the ancestral genes which have underwent changes. The multiple copies of each gene in a family were constructed based on gene duplicati...
متن کاملThe Black Queen Hypothesis: Evolution of Dependencies through Adaptive Gene Loss
Reductive genomic evolution, driven by genetic drift, is common in endosymbiotic bacteria. Genome reduction is less common in free-living organisms, but it has occurred in the numerically dominant open-ocean bacterioplankton Prochlorococcus and "Candidatus Pelagibacter," and in these cases the reduction appears to be driven by natural selection rather than drift. Gene loss in free-living organi...
متن کاملThe role of environments with extreme ecological conditions in the reductive evolutionary development processes of animal
Different groups of animals show phenotypic characters, which have been resulted by the reductive phenomena. The examples are the absence of pigmentation; dwindle of eyes in some cave-living animals, and also the absence of scale in some fishes. These characters are often leaded to evolution of new species with special adaptation that is so called "Regressive evolution". The reductive phenomena...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 7 شماره
صفحات -
تاریخ انتشار 2011